Extraction of Planarization Length and Response Function in Chemical-Mechanical Polishing

MRS 1998 Symposium Q: Materials Issues in Chemical-Mechanical Polishing

Invited Talk

Duane Boning, Dennis Ouma, and James Chung

Massachusetts Institute of Technology, EECS Microsystems Technology Laboratories Room 39-567, Phone: (617) 253-0931 Email: boning@mtl.mit.edu

MIT-N

Capsule Summary

- Problem: Global non-planarity within die in oxide CMP
- Goal: Efficient modeling of oxide thickness across arbitrary product die patterns
- Approach: Simplified analytic model
 - □ Removal rate is inversely proportional to effective density
 - ❑ Effective density determination is critical:
 - polish at each point is affected by nearby topography/pattern density
- Previous Work: Square uniformly weighted window to calculate effective density

This Work:

- Circular elliptically weighted "response function" for effective density
- Response function is physically motivated: elastic pad bending/deformation
- □ New "step density" test pattern to improve extraction/characterization

2

Outline

- Capsule Summary
- Background
 - Global Non-Planarity and Oxide Thickness Prediction
- Modeling
 - Density-Dependent Oxide CMP Model
 - Effective Density Calculation Square Window & Planarization Length
 - □ Signal Processing Analogy Density Step Response
- Physically-Motivated Effective Density Calculation
 Elliptic Window & Planarization Response Function
- Results
 - Density Step Test Structure
- Discussion and Summary

Problem: Oxide Thickness Variation & CMP

Goal: Die-Level Prediction of Oxide Thickness

- The variation within the die is often larger than the across-wafer variation
- Each product/layer produces a unique dielevel variation pattern and thickness range

InterLevel Dielectric (ILD) thickness varies across both the wafer and across each die

Oxide CMP Model: Previous Work

- CMP Characterization Mask Set
 - □ Pitch (linewidth and line space), perimeter, and structure area are minor effects
 - Conclusion: **Density** is the key layout parameter
 - □ Observe a simple oxide thickness vs. density dependence!

Oxide CMP Global Planarization Model

- 1. Polish rate at each point on the die is inversely proportional to the effective pattern density
- 2. Effective pattern density at each point depends on the nearby topography and density
- 3. The effective pattern density can be determined by the planarization window (or planarization length)
- 4. The planarization length must be characterized for a given CMP consumable set and process

MIT/Sandia/HP CMP Test Masks

- What are the key effects?
 - Extraction of key model parameters

Density Mask

Perimeter/Area

Result: Density Effect is Dominant

Simple linear relationship between final oxide thickness and effective density

Outline

Capsule Summary

Background

□ Global Non-Planarity and Oxide Thickness Prediction

✓ Modeling

Density-Dependent Oxide CMP Model

□ Effective Density Calculation - Square Window & Planarization Length

□ Signal Processing Analogy - Density Step Response

Physically-Motivated Effective Density Calculation
 Elliptic Window & Planarization Response Function

- Results
 - Density Step Test Structure
- Discussion and Summary

Oxide CMP Pattern Dependent Model

Removal rate inversely proportional to density:

$$\frac{dz}{dt} = -k_p p v = -\frac{K}{\rho(x, y)}$$

Density assumed constant (equal to pattern) until local step has been removed:

- *K* = blanket oxide removal rate for a die of interest
- t =polish time
- $\rho_0 \ = \text{local pattern density}$

$$\rho(x, y, z) = \begin{cases} \rho_0(x, y) & z > z_0 - z_1 \\ 1 & z < z_0 - z_1 \end{cases}$$

■ Final oxide thickness related to effective density:

$$z = \begin{cases} z_0 - \left(\frac{Kt}{\rho_0(x, y)}\right) & Kt < \rho_0 z_1 \\ z_0 - z_1 - Kt + \rho_0(x, y) z_1 & Kt > \rho_0 z_1 \end{cases}$$

Evaluation of pattern density $\rho_0(x, y)$ is key to model development!

MIT-MTL

Effective Density Using a Moving Window

of an example layout

Top view

Effective density at X for a square constant weight window is:

Raised area in square

Total area of square

L is defined as planarization length

The long-range "moving average" density calculation corresponds to a simple convolution picture:

 $d(x, y) = p(x, y) \otimes l(x, y)$

- \Box d(x,y) is the effective density at (x,y)
- \Box p(x,y) is the "planarization impulse response" (weighting function) to raised features
- \Box *l*(*x*,*y*) is the local (feature-scale) density

Signal Processing Analogy: Step & Impulse "Planarization Response"

Effective Density Window IDENTICAL TO "Planarization Impulse Response"

- Density window captures what nearby topography the pad "sees" at point X.
- Alternative to gradual density layout: Fabricate a layout "step density"
 - The resulting oxide thickness provides a "step density response" of the pad and process -- that can be measured experimentally

Experimental Idea: Step Density Test Structure

- Fabricate step density structures; polish
- Experimentally measure oxide thickness across step density structure

□ trace = "step response"

- I In 1D case, can differentiate "step response" to recover the "impulse response" shape
- In 2D square window case, can also differentiate trace to recover planarization response function shape

Planarization Step Response for Cylindrical Window

- Square window is nonphysical
- Consider cylindrical window
 - Radial symmetry
 - Uniform weighting
 - Result: Smoother step response
 - In cylindrical window case, simple differentiation of 1D trace does **NOT** correctly recover window response shape

Planarization Step Response for Gaussian Window

- Consider weighted circular window
 - □ Radial symmetry
 - Weighting depends on R
- Result: Still smoother still step response
- In gaussian window case, simple differentiation of 1D trace can correctly recover window response shape (x & y directions are separable)

Outline

- Capsule Summary
- Background
 - □ Global Non-Planarity and Oxide Thickness Prediction

Modeling

- Density-Dependent Oxide CMP Model
- Effective Density Calculation Square Window & Planarization Length
- □ Signal Processing Analogy Density Step Response

✓ Physically-Motivated Effective Density Calculation

- □ Elliptic Window & Planarization Response Function
- Results
 - Density Step Test Structure
- Discussion and Summary

New Elliptically Weighted Planarization Response

- Recovering a unique window shape from the step response trace appears difficult -- assume a shape
- Question: What window shape should be used?
- Approach:
 - □ Find a physically sensible window
 - Tune the length scale of shape function to best match the step response (or other) experimental data
- **Proposal**: specially weighted window:
 - □ Radial symmetry
 - Weighting as an elliptic function

Motivation: Deformation Profile in an Elastic Material

Planarization Response Function: Length Scale Parameterization

- New Definition: "planarization length" is defined as the width (length scale) parameter in the elliptic elastic deformation function:
 - □ L = width of response function at $2/\pi$ of its peak value

Planarization response function

- Shape can be varied substantial by choice of the planarization length L:
- Use L to characterize response for given pad, process

Experimental Extraction: Planarization Response

- Should be done for fixed process conditions
- For each candidate response function type (e.g. square, cylindrical, gaussian, elliptic)
 - Determine optimal response function length as shown on flow chart
- The response function which results in overall least mean sum of square error between model and data is chosen

Outline

- Capsule Summary
- Background
 - Global Non-Planarity and Oxide Thickness Prediction
- Modeling
 - Density-Dependent Oxide CMP Model
 - Effective Density Calculation Square Window & Planarization Length
 - □ Signal Processing Analogy Density Step Response
- Physically-Motivated Effective Density Calculation
 Elliptic Window & Planarization Response Function

✓ Results:

- Density Step Test Structure
- Discussion and Summary

Response Function Comparisons - Step Density

Square Cylinder n Elliptic Gaussian

Tool/Process 1:

Filter	RMS Error	Window Size
Square	91Å	5.25 mm
Cylindrical	100Å	5.85 mm
Gaussian	56Å	10.5 mm
Elliptic	42Å	7.35 mm

Response Function Comparisons - Test Die

1

Tool/Process 2:

Filter	RMS Error	Window Size
Square	257 A	2.7 mm
Cylindrical	251 A	3.3 mm
Gaussian	243 A	5.1 mm
Elliptic	239 A	3.9 mm

Cylinder

0.5

Using the Elliptic Response Function: Time Evolution

Can apply response function to find effective density across entire die

Given effective density and blanket removal rate, can use time-dependent model to predict remaining oxide thickness

Outline

- Capsule Summary
- Background
 - Global Non-Planarity and Oxide Thickness Prediction
- Modeling
 - Density-Dependent Oxide CMP Model
 - Effective Density Calculation Square Window & Planarization Length
 - □ Signal Processing Analogy Density Step Response
- Physically-Motivated Effective Density Calculation
 Elliptic Window & Planarization Response Function
- Results:
 - Density Step Test Structure
- ✓ Discussion and Summary

Planarization Length/Response vs. TIR

- TIR = Total Indicated Range = Max oxide thickness Min oxide thickness
 - □ Measures total within-die global nonuniformity
 - Good figure of merit for a **given mask layout** and process/consumable set
 - □ Must know where high and low oxide thicknesses are located in die
 - Provides little information that is applicable to other masks

Planarization Length and Response Function

- □ Measures planarization capability of a given process/consumable set
- □ A derived parameter based on measurements & characterization mask
- **Powerful:** used to efficiently **predict oxide thickness for arbitrary layout:**

Effective density with elliptic filter of length 3.9 mm

Opportunity: relate planarization length to fundamental pad/process parameters

Elliptic Planarization Function: Challenging Questions

Elliptic filter found to empirically produce very good match to data However...

- Need better physical explanation:
 - □ shape function related to elastic deformation
 - □ why deformation rather than normal stress?
 - □ how relate to pad hardness, pad stack, other material properties?
 - Achuthan et al. (Sandia) large dependency on back pad
 - static vs. dynamic pad modulus?
 - □ how depend on or relate to other process parameters?
 - downforce, speed
 - temperature
 - slurry characteristics

MIT-N

Application to Other CMP Processes

Shallow Trench Isolation (STI)

- Density extraction and model directly applicable to oxide polish phase in STI
- □ Predict time to touch-down on nitride (Pan et al., VMIC '98)
- □ Applicable to nitride over-polish phase in STI?

Copper Damascene

- □ Multiple pattern dependent effects:
 - Metal line dishing
 - Pattern dependent erosion -- may be amenable to density modeling, but on much shorter length scale

□ Erosion may depend on more than an effective density (Park at al., VMIC '98)

Key Points and Conclusions

- Possible to predict die-level oxide thickness variation oxide CMP model
- Proposed a new step-density test pattern to characterize planarization length
- Proposed a physically-motivated planarization response function
 Elliptic circular window based on elastic pad deformation
- More work needed to:
 - Establish physical relationship between pad/process parameters and window shape
 - □ Facilitate/simplify direct extraction of window shape and planarization length

MIT-N

Acknowledgments

Dale Hetherington, Sandia National Laboratories

Assistance and collaboration on many aspects of oxide and STI CMP characterization and modeling methodology development

Texas Instruments (Greg Shinn and others); Applied Materials (Tony Pan and others)

□ Experimental interactions on oxide and STI polishing

This work has been supported in part by

□ DARPA under contact #DABT63-95-C-0088

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

MIT-N