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ABSTRACT

The oxide polishing characteristics of fine-linewidth features typically encountered in
realistic chip layouts have been examined using electrical test structures. Even at these small
dimensions, we find that global pattern density plays a major role in determining the final pol-
ished oxide thickness. In addition, differences in the initial dielectric deposition profile for
small features produces an apparent pitch effect which must also be taken into account. Based
on experimental results, linewidth biasing during the computation of global density for model-
ing of CMP dielectric planarization behavior is suggested.

I. INTRODUCTION

The importance of underlying topography on the polishing of interconnect interlevel
dielectric (ILD) layers by chemical-mechanical polishing (CMP) is well recognized. The
details of pattern dependent polishing, however, are not well understood. Previous works
[1,2,3] have identified pattern density as a key factor affecting global planarization; but the
definition of pattern density is often ambiguous. Furthermore, little has been reported on the
effect of density for small features typically encountered in realistic chip layouts.

In this work, we examine oxide polishing characteristics over small features (down to 2
μm pitch) and spaces in contrast to the larger features and spaces typically reported (e.g. [4]).
We use electrical test structures to study ILD thickness variation over various local pattern
densities and pitches; the experiments are detailed in Section II and measurement results pre-
sented in Section III. We show that, at the small dimensions, global pattern density plays the
major role in determining the final ILD thickness. However, differences in the initial dielectric
deposition topography for small features must also be taken into account in understanding
CMP dielectric planarization behavior. Section IV discusses these results, and suggests a line-
width biasing procedure for the computation of density that accounts for the observed small
line-space (narrow pitch) effect. Finally, Section V summarizes the contributions of this paper.

II. EXPERIMENT

The basic test structure used to infer ILD thickness is a capacitor with a uniform top
electrode and a fingered bottom electrode as shown in Figure 1a [5]. In the bottom electrode
(shown in Figure 1b), we systematically vary the linewidth and spacing within the 500 μm by
500 μm capacitor area to explore the effects of metal pitch and local metal density (defined as
the ratio of linewidth to pitch). Values of pitch explored are 2μm, 5μm, 10μm and 15μm. For
each value of pitch, the line spacing and width are varied to achieve the local density values
ranging from 30% to 80% in steps of 10%. This results in 24 unique capacitor structures. A
100% local density structure, consisting of a parallel-plate capacitor, is also included. Table I
summarizes the experimental layout factors.
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A typical probe layout consists of four different capacitor structures along with Kelvin
resistors and a Van der Pauw structure which are used to account for local linewidth variation
via resistive measurements (see Figure 2 (a)). The Kelvin resistors are located in the midst of
dummy lines which mimic the underlying topography of the corresponding capacitor structure
[5]. In order to explore the effects of global density, three replicates of each probe layout are
placed within a surrounding dummy-line environment of 100%, 75% and 50% densities which
are made up of 20 μm metal pitch lines of varying linewidths (Figure  2(b)).

Six-inch test wafers each containing 48 dies were fabricated using a short-flow process.
An initial PECVD TEOS layer was deposited to provide electrical isolation. A metal stack
(Al:1% Cu with TiN as a barrier layer) was then deposited and patterned to form the bottom
electrode of the capacitor. A thick PECVD TEOS layer forming the ILD layer was next depos-
ited and CMP planarized down to the target dielectric thickness. After via formation, a second
metal stack was deposited and patterned, forming the top capacitor electrode. ILD thickness
measurements were extracted from AC high frequency (100 kHz) capacitance and linewidth
measurements using lookup tables of ILD thickness versus capacitance and linewidth gener-
ated using TCAD simulations [5].

III. RESULTS

The effect of the density in both the local structure and the surrounding environment is
first considered, followed by an examination of the effect of pitch on the polishing characteris-
tics. All final ILD thicknesses have been consistently normalized by an arbitrary constant; the
lines drawn in the figures are a spline fit using the mean of the measured data points.

(a) Impact of the Local Density and Surrounding Dummy-Line Environment

Figure 3(a, b, c, d) shows the ILD thickness as a function of the designed local metal
density; each line corresponds to one of the three surrounding dummy-line environments, and
each subplot is for a specific designed pitch. As the local metal density increases, the final ILD
thickness is observed to increase monotonically, except for the 2μm pitch case where the ILD
thickness appears to be nearly constant. At each particular pitch, we also observe significant
differences in the final thickness for the three dummy-line environments as shown by the pro-
nounced separation between each line.

(b) Impact of Narrow Pitch

Figure 4(a, b, c) shows the final ILD thickness as a function of the local metal density;
in these plots, each line corresponds to a designed pitch, and each subplot is for a specific sur-
rounding dummy-line environment. Figure 4(b), for example, shows ILD thickness vs. local
metal density in a 75% environment. We observe a linear trend for each designed metal pitch
with the exception of the 2μm pitch structures, where the relatively constant dependence on
local density is observed. Also, as can be seen from the spacing between the different lines,
the sensitivity to the metal pitch value decreases for larger pitches (e.g. the difference between
2μm and 5μm pitch lines is much greater than the difference between the 10μm and 15μm
lines). Similar behavior is also observed for the two other dummy-line environments (Figures
4 (a) & 4 (c)).
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IV. ANALYSIS AND DISCUSSION

(a) Global Density Issues

Based on the results in Section III, we conclude that the polishing characteristics of a
particular structure are largely a function of the combined global density of the structure and
its environment. The global density is determined by an effective area of contact between the
polishing pad and the layout-dependent surface topography. As seen from the plots of Figure
3, the different environments around a particular structure have a large influence on the local
polishing behavior; the effective area within which the density needs to be calculated is seen to
be larger than the particular structure size in our layout (500μm by 500μm). Each structure is
large enough, however, that the effective global density in and surrounding that structure is
also significantly impacted (and experimentally probed) by the structure itself. We thus find
that careful evaluation of the global density is necessary in order to understand the polishing
behavior of an arbitrary structure within a particular environment.

A general metric for global pattern density can be defined as the ratio of metal area in a
given square window to the area of the window. For this study, we calculate pattern density for

a given window size from the center of a structure. Figure 5 shows the correlation (R2) of ILD
thickness vs. a linear model of global pattern density evaluated in the given window size for all
structures. Since the window is assumed to be square, its size can be represented by the length

of one side of the window. The figure shows that the model correlation (R2) of ILD thickness
and global density is maximum for a square with an edge size of 4.0mm. We thus conclude
that, for this CMP process and consumable set, a 4.0mm window is an appropriate window
size with which to evaluate global density from the layout for each structure. Considering the
structure with line-spaces greater than 3μm in Figure 6, we see that a general linear trend in
ILD thickness is observed as a function of the calculated combined global density using this
window size.

(b) Narrow line-space issues

In Figure 6, we see two distinct groups of structures that exhibit different dependences
upon the global pattern density: those structures with line-spacing of greater than 3μm and
those with line-spacing less than 3μm. We propose that this difference is due to differences in
the ILD deposition profile between small and large line-space structures.

The SEM images in Figure 7 contrasts the initial deposition profile for structures with
narrow line-spaces and large line-spaces. The smaller features exhibit substantial lateral depo-
sition, resulting in a relatively flat topography compared to the larger features which have a
more conformal deposition. In addition, we find that the initial step-height of the before-polish
deposited dielectric film is a function of line-spacing, as summarized in Figure 8. As a result
of these step-height differences, small and large line-spaces structures will have different pol-
ishing behavior. The apparent pitch/line-spacing dependence in Figures 3 and 4 is also a man-
ifestation of these differences in the initial deposition profile. The effect of initial step-height
on profile evolution can be accounted for using the model in [6]; the effect of the small line-
spacings in narrow pitch features is next considered.
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The impact of narrow spacings can be accounted for by an appropriate biasing in the
layout linewidths prior to global density calculation; the effective bias to use can be deter-
mined from the data of Section III. In Figure 4(b), we consider first the rightmost points (70%
local density) of the 2μm pitch lines; these have 0.6μm spaces which are essentially com-
pletely filled by the deposition. The 70% and 80% local density points on the 5μm pitch lines
provide bounds on the effective lateral dimension for computational biasing of the linewidth
due to deposition: the 80% points have 1μm spaces, while the 70% points have 1.5 μm spaces.
The 1μm space structures fill completely and polish the same as the 2μm pitch lines, while the
1.5μm space structures do not completely fill and polish slightly differently. For this process,
an appropriate lateral bias for density computation is thus between 0.5μm and 0.75μm.

V. SUMMARY

We have studied oxide polishing over fine pitch metal features using dedicated electrical
test structures. Our experiments show that the final polished oxide thickness for a particular
structure in an arbitrary surrounding may be effectively modeled as a function of global den-
sity over an empirically determined square window. The pitch/line-spacing effect observed
suggests that the deposition profile shape needs to be taken into account in CMP modeling; a
simple approach is to bias the linewidth during calculation of the global density. This study’s
results will be useful in accurate pattern dependent ILD thickness prediction, and for layout
and process design optimization.
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